3.13. LABS

Exercise 3.3: Configure Probes

When large datasets need to be loaded or a complex application launched prior to client access, a readinessProbe can be used. The pod will not become available to the cluster until a test is met and returns a successful exit code. Both readinessProbes and livenessProbes use identical syntax with minor differences.

There are three types of liveness probes: a command returns a zero exit value, meaning success, an HTTP request returns a response code in the 200 to 399 range, and the third probe uses a TCP socket. In this example we'll use a command, **cat**, which will return a zero exit code when the file /tmp/healthy has been created and can be accessed.

1. Edit the YAML deployment file and add the stanza for a readinessprobe. Remember that when working with YAML whitespace matters. Indentation is used to parse where information should be associated within the stanza and the entire file. Do not use tabs. If you get an error about validating data, check the indentation. It can also be helpful to paste the file to this website to see how indentation affects the JSON value, which is actually what Kubernetes ingests: https://www.json2yaml.com/ An edited file is also included in the tarball, but requires the image name to be edited to match your registry IP address.

student@cp:~/app1\$ vim simpleapp.yaml

```
simpleapp.yaml
       spec:
2
3
         containers:
         - image: 10.111.235.60:5000/simpleapp
           imagePullPolicy: Always
           name: simpleapp
                                    #<--This line and next five
           readinessProbe:
             periodSeconds: 5
             exec:
9
10
               command:
11
               - cat
               - /tmp/healthy
12
           resources: {}
13
14
15
```

2. Delete and recreate the try1 deployment.

```
student@cp:~/app1$ kubectl delete deployment try1
```

```
deployment.apps "try1" deleted
```

student@cp:~/app1\$ kubectl create -f simpleapp.yaml

```
deployment.apps/try1 created
```

3. The new try1 deployment should reference six pods, but show zero available. They are all missing the /tmp/healthy file.

student@cp:~/app1\$ kubectl get deployment

```
NAME
            READY
                     UP-TO-DATE
                                   AVAILABLE
                                                AGE
nginx
            1/1
                     1
                                   1
                                                 19m
registry
            1/1
                     1
                                   1
                                                 19m
            0/6
                     6
                                   0
                                                 15s
try1
```

4. Take a closer look at the pods. Use **describe pod** and **logs** to investigate issues, note there may be no logs. Choose one of the try1 pods as a test to create the health check file.

student@cp:~/app1\$ kubectl get pods

```
READY
                                      STATUS
                                                RESTARTS
                                                            AGE
NAME
                            1/1
                                                            40m
nginx-6b58d9cdfd-g7lnk
                                      Running
                                                1
                            1/1
                                                            40m
registry-795c6c8b8f-7vwdn
                                      Running
                                                1
try1-9869bdb88-2wfnr
                            0/1
                                      Running
                                                0
                                                            26s
                            0/1
                                      Running
                                                0
                                                            26s
try1-9869bdb88-6bknl
try1-9869bdb88-786v8
                            0/1
                                      Running
                                               0
                                                            26s
try1-9869bdb88-gmvs4
                            0/1
                                      Running 0
                                                            26s
                                                            26s
try1-9869bdb88-lfvlx
                            0/1
                                      Running
                                               0
                                                            26s
try1-9869bdb88-rtchc
                            0/1
                                      Running
                                                0
```

5. Run the bash shell interactively and touch the /tmp/healthy file.

```
student@cp:~/app1$ kubectl exec -it try1-9869bdb88-rtchc -- /bin/bash
root@try1-9869bdb88-rtchc:/# touch /tmp/healthy
root@try1-9869bdb88-rtchc:/# exit

exit
```

6. Wait at least five seconds, then check the pods again. Once the probe runs again the container should show available quickly. The pod with the existing /tmp/healthy file should be running and show 1/1 in a READY state. The rest will continue to show 0/1.

student@cp:~/app1\$ kubectl get pods

```
READY
                                      STATUS
                                               RESTARTS
                                                          AGE
nginx-6b58d9cdfd-g7lnk
                           1/1
                                      Running
                                              1
                                                           44m
registry-795c6c8b8f-7vwdn
                           1/1
                                      Running
                                              1
                                                           44m
                           0/1
                                      Running 0
                                                           4m
try1-9869bdb88-2wfnr
                                      Running 0
try1-9869bdb88-6bknl
                           0/1
                                                          4m
try1-9869bdb88-786v8
                           0/1
                                      Running 0
                                                          4m
try1-9869bdb88-gmvs4
                           0/1
                                      Running
                                              0
                                                           4m
try1-9869bdb88-lfvlx
                           0/1
                                      Running
                                               0
                                                           4m
try1-9869bdb88-rtchc
                            1/1
                                      Running
```

7. Touch the file in the remaining pods. Consider using a **for** loop, as an easy method to update each pod. Note the >shown in the output represents the secondary prompt, you would not type in that character

```
student@cp:~$ for name in $(kubectl get pods -l app=try1 -o name); \
do kubectl exec $name -- touch /tmp/healthy; done
```

8. It may take a short while for the probes to check for the file and the health checks to succeed.

3.13. LABS 3

student@cp:~/app1\$ kubectl get pods

```
STATUS
                                               RESTARTS
                                                          AGE
nginx-6b58d9cdfd-g7lnk
                           1/1
                                      Running 1
                                                           1h
registry-795c6c8b8f-7vwdn
                           1/1
                                      Running
                                                           1h
                                                          22m
try1-9869bdb88-2wfnr
                           1/1
                                      Running
                                               0
                                                          22m
try1-9869bdb88-6bknl
                           1/1
                                      Running
                                               0
try1-9869bdb88-786v8
                           1/1
                                      Running
                                               0
                                                           22m
                                              0
try1-9869bdb88-gmvs4
                           1/1
                                      Running
                                                           22m
try1-9869bdb88-lfvlx
                           1/1
                                      Running
                                              0
                                                           22m
try1-9869bdb88-rtchc
                                                           22m
                           1/1
                                      Running
                                               0
```

Now that we know when a pod is healthy, we may want to keep track that it stays healthy, using a livenessProbe. You could use one probe to determine when a pod becomes available and a second probe, to a different location, to ensure ongoing health.

Edit the deployment again. Add in a livenessProbe section as seen below. This time we will add a Sidecar container to the pod running a simple application which will respond to port 8080. Note that the dash (-) in front of the name. Also goproxy is indented the same number of spaces as the - in front of the image: line for simpleapp earlier in the file. In this example that would be seven spaces

student@cp:~/app1\$ vim simpleapp.yaml

simpleapp.yaml

```
terminationMessagePath: /dev/termination-log
2
            terminationMessagePolicy: File
3
                                           #<-- Indented 6 spaces, add lines from here...
4
         - name: goproxy
           image: registry.k8s.io/goproxy:0.1
5
           ports:
6
           - containerPort: 8080
           readinessProbe:
             tcpSocket:
9
               port: 8080
10
             initialDelaySeconds: 5
11
             periodSeconds: 10
12
           livenessProbe:
                                           #<-- This line is 8 spaces indented, fyi
13
             tcpSocket:
14
15
               port: 8080
             initialDelaySeconds: 15
16
             periodSeconds: 20
                                           #<-- ....to here
17
18
         dnsPolicy: ClusterFirst
19
         restartPolicy: Always
20
21
```

10. Delete and recreate the deployment.

```
student@cp:~$ kubectl delete deployment try1
```

```
deployment.apps "try1" deleted
```

student@cp:~\$ kubectl create -f simpleapp.yaml

```
deployment.apps/try1 created
```


11. View the newly created pods. You'll note that there are two containers per pod, and only one is running. The new simpleapp containers will not have the /tmp/healthy file, so they will not become available until we touch the /tmp/healthy file again. We could include a command which creates the file into the container arguments. The output below shows it can take a bit for the old pods to terminate.

student@cp:~\$ kubectl get pods

NAME	READY	STATUS	RESTARTS	AGE
nginx-6b58d9cdfd-g7lnk	1/1	Running	1	13h
registry-795c6c8b8f-7vwdn	1/1	Running	1	13h
try1-76cc5ffcc6-4rjvh	1/2	Running	0	3s
try1-76cc5ffcc6-bk5f5	1/2	Running	0	3s
try1-76cc5ffcc6-d8n5q	0/2	ContainerCreating	0	3s
try1-76cc5ffcc6-mm6tw	1/2	Running	0	3s
try1-76cc5ffcc6-r9q5n	1/2	Running	0	3s
try1-76cc5ffcc6-tx4dz	1/2	Running	0	3s
try1-9869bdb88-2wfnr	1/1	Terminating	0	12h
try1-9869bdb88-6bknl	1/1	Terminating	0	12h
try1-9869bdb88-786v8	1/1	Terminating	0	12h
try1-9869bdb88-gmvs4	1/1	Terminating	0	12h
try1-9869bdb88-lfvlx	1/1	Terminating	0	12h
try1-9869bdb88-rtchc	1/1	Terminating	0	12h

12. Create the health check file for the readinessProbe. You can use a **for** loop again for each action, this setup will leverage labels so you don't have to look up the pod names. As there are now two containers in the pod, you should include the container name for which one will execute the command. If no name is given, it will default to the first container. Depending on how you edited the YAML file try1 should be the first pod and goproxy the second. To ensure the correct container is updated, add **-c simpleapp** to the **kubectl** command. Your pod names will be different. Use the names of the newly started containers from the **kubectl get pods** command output. Note the >character represents the secondary prompt, you would not type in that character.

```
student@cp:~$ for name in $(kubectl get pods -l app=try1 -o name); \
  do kubectl exec $name -c simpleapp -- touch /tmp/healthy; done
```

13. In the next minute or so the Sidecar container in each pod, which was not running, will change status to Running. Each should show 2/2 containers running.

student@cp:~\$ kubectl get pods

IAME	READY	STATUS	RESTARTS	AGE
nginx-6b58d9cdfd-g7lnk	1/1	Running	1	13h
registry-795c6c8b8f-7vwdn	1/1	Running	1	13h
cry1-76cc5ffcc6-4rjvh	2/2	Running	0	3s
cry1-76cc5ffcc6-bk5f5	2/2	Running	0	3s
cry1-76cc5ffcc6-d8n5q	2/2	Running	0	3s
cry1-76cc5ffcc6-mm6tw	2/2	Running	0	3s
cry1-76cc5ffcc6-r9q5n	2/2	Running	0	3s
ry1-76cc5ffcc6-tx4dz	2/2	Running	0	3s
try1-76cc5ffcc6-tx4dz	2/2	Running	0	3s

14. View the events for a particular pod. Even though both containers are currently running and the pod is in good shape, note the events section shows the issue, but not a change in status or the probe success.

student@cp:~/app1\$ kubectl describe pod try1-76cc5ffcc6-tx4dz | tail

3.13. LABS 5

```
default/try1-754bf9c75b-vx58x to cp
Normal Pulling
                 7m44s
                                       kubelet
                                                          Pulling image
   "10.97.177.111:5000/simpleapp"
Normal Pulled
                 7m44s
                                       kubelet
                                                          Successfully pulled image
  "10.97.177.111:5000/simpleapp" in 96.710062ms
Normal Created 7m43s
                                       kubelet
                                                         Created container simpleapp
Normal Started 7m43s
                                       kubelet
                                                         Started container simpleapp
Warning Unhealthy 7m6s (x9 over 7m42s) kubelet
                                                          Readiness probe failed:
  cat: /tmp/healthy: No such file or directory
```

15. If you look for the status of each container in the pod, they should show that both are Running and ready showing True.

```
State: Running
Ready: True
State: Running
Ready: True
Ready True
ContainersReady True
```